Polyester – Egenskaber

Den tekstilbiologiske brevkasse fik et spørgsmål, som, i det store hele, lyder:

Jeg bryder mig ikke om stof med polyester – kan ikke komme af med varmen, det er underligt at røre ved – men – løbetøj er lavet af polyester – og lader varme passere.

Er det vævningen eller arten af polyester der gør forskellen?

Fra wikiPolyester er en kategori af polymerer, som indbefatter den funktionelle gruppe kaldet ester i hovedkæden. Selvom der er mange polyestre, bruges termen polyester ofte til at betegne det specifikke materiale polyethylentereftalat (PET).

Som wiki antyder; polyester er et vidt begreb! Og, selv når vi begrænser det til polyesteren PET, så kan fibre af denne polymer fremstilles og funktionaliseres i det uendelige; kun fantasien (næsten) sætter grænser.

PET som tekstil materiale er som udgangspunkt hydrofobt (“bange” for fugt) eller oleofilt (“glad” for fedt/olie). PET fibre er altså ikke fugt-absorberende, i samme grad som naturfibre (bomuld, hør, uld (til dels) silke), eller som de regenererede fibre (viskose, tencel, mælke-fibre, etc). At PET fibre ikke binder fugt udnyttes til funktions/sports-tøj; fugten/sveden fra vor hud ledes bort fra huden, og kan fordampe fra tekstil-overfladen. Det er der en del marketings-folk, der har omsat til de fineste sci-fi high-tech illustrationer;-)

 

Overfladen af PET fibre kan øges ved at fibrene fremstilles tyndere, såkaldte mikrofibre. I figuren herunder refererer “micron” til diameteren af fibrene, målt i mikrometer. Tallene er selvfølgelige gennemsnitstal og/eller eksempel-størrelser. Det ses at mikrofibre er for eksempel halvt så tykke som bomuld.

Dertil kommer at “fugt-bortlednings-egenskaben” kan øges ved at fibrene formes med “kanaler” i fibrenes længde-retning. Når “fugt-bortlednings-egenskaben” er forbedres, omtales fibrene som “wicking“. Fibrenes “kanaler” kan formes på alverdens flippede måder, og fibrene markedsføres typisk under deres deres handles-navne. Eksempler er Coolmax™, der ses i figuren herunder; “ovale” fibre, i tværsnit, med 4-6 kanaler i længde-retningen…

-eller de såkaldte 4DG™, der tager det der med kanaler i fiber-længderetningen til ekstremer;-)

 

 

 

 

 

 

 

 

Når PET fibre ikke binder fugt, betyder det ofte at de også er statisk elektriske. Fugt, der er bundet i fibre, kan være en af de måder elektroner kan “bindes” og “vandre” i materialet; Derved kan det undgås at den statiske elektricitet opbygges, og der springer gnister.

Statisk elektricitet kan være særdeles irriterende, men også direkte skadeligt, hvis PET tekstiler benyttes nær elektriske installationer. -Derfor er der selvfølgelig udviklet et væld af metoder til at reducere statisk elektricitet i syntetiske fibre. En af måderne er at tilsætte fugt- eller elektron-bindende stoffer til polyester-pærevællingen, inden denne formes til fibre. Lidt som når der tilsættes krydderier til pasta-dejen, inden der presses spagetti;-)

Der findes et væld af tilsætningsstoffer, der kan funktionalisere PET fibre, og for eksempel “fixe” denne uheldige egenskab ved PET, at statisk elektricitet opbygges; aske, mineraler, kulstof…

Så, når man oplever ens PET-beklædning som noget hvor man ikke “kan komme af med varmen” og at PET “er underligt at røre ved”, så er det jo nok fordi man ikke har været ambitiøs i design-fasen; defineret hvad man ønsker at ens tekstile produkt skal kunne… (eller, man har været knivskarp på at definere at det PET stof der benyttes skal være billigt og se godt ud). For eksempel kan der være benyttet stof der består af for tykke PET fibre, eller der er benyttet PET fibre uden den rette antistatiske funktionalisering. Ofte er PET et yndet materiale til fashion beklædning, fordi det er “let at arbejde med” (der er for eksempel ikke årstids-variation, som der kan være ved naturfibre) og det er billigt at fremstille, krymper ikke, og kan let og billigt fremstilles med de fineste (mode-)farver og mønstre. Metervarerne til fashion beklædning er ofte valgt på grund af pris og udseende, og ikke efter funktionalitet. Modsat forholder det sig med PET til sports- og funktionstøj; her benyttes PET fibre der er fremstillet til “at kunne” noget. Wicking, fugt-transporterende, anti-odor, anti-bakterielle, anti-statisk, bygge-frastødende, brand-hæmmende… you name it

At “funktionelt påklædning” er forvist til sports- og arbejdstøj er lidt ærgerligt; Hvis jeg kunne bestemme, så skulle der afgjort være mere dagligdags påklædning, der er funktionaliseret meget mere efter at det skal have en funktionalitet ud over at være billigt og “se moderne ud”.

 

 

Umorfil® skjorte-stof

Yes!
Efter længere tids ben-arbejdet, inklusiv møde med forretnings-folkene og forskerne bag materialet, ved årets Premiere Vision i Paris, har jeg såmænd modtaget en flok meter af det fineste vævede stof, indeholdende Umorfil®; Viskose, “beklædt” med kollagen-protein fra fiskeskæl.
Ud over at indeholde 20% Umorfil®, består det af 60%hør og 20% Tencel®. LÆKKER kombi:-)
-nu skal der analyseres og undersøges og testes. Og jeg skal have nogen til at sy mig en efterfølger for min trofaste Levis commuter skjorte. Og nogen til at bistå med at få det farvet. -Bleget hvid er ikke rigtig mig…;-) Og, det er da også for spændende en opgave, at undersøge hvordan dette bionic materiale tager imod tekstilfarver, til at lade vær’:-)

Jeg har tidligere kort omtalt dette spændende material her, i forbindelse med omtale af alle de spændende man-made protein-fibre, der popper op, derude. Umorfil® er jo ikke egentlig en protein-fiber. I marketings-jargon hedder det:

UMORFIL® viscose is the first fiber which combines both animal and botanic features”.

Umorfil® er altså en kombination af cellulose og protein, plante biomolekyle og animalske biomolekyler. -Alle klassiske klassifikations-skemaer må dermed kapitulere, i forhold til at få indpasset Umorfil®:-)

 

 

 

 

 

 

 

 

 

Den måde, hvorpå “beklædningen” af viskose-fibrene, med kollagen-protein, rent teknisk og molekylært finder sted, er omgæret med inspirerende hemmelighed… Alle mulige fede buzz-words benyttes; Biomimetic, supramolecular material, biotechnology, biomimicry, engineering… -Jeg er selvfølgelig godt igang med at finde ud af hvad det EGENTLIG betyder;-) Det er svært spændende, for en nørd som jeg:-)

Specifikationerne for materialet er særdeles imponerende, i forhold til funktionalitet ved hud-kontakt:
Og på behørig vis er der udviklet den fineste consumer-facing grafik, til at kommunikere disse tekniske specifikationer.
What’s not to like:-)
Skjorten, der skal syes, er en remake af Levis commuter skjorte, som jeg har brugt flittigt i et par år, efterhånden, og som har været en trofast del af min workwear uniform; den kan man læse meget mere om her.  http://tekstilbiologi.dk/decision-fatigue-avoidance-work-uniform/
Farvning af stoffet bliver virkelig spændende. Både fordi Umorfil® består af både protein og cellulose, og fordi stoffet består af en ret go’ andel hør. Hør er jo kendt for at tage lidt ringere imod farven, end andre cellulose fibre, da fibrene typisk har en højere grad af krystalinitet.
Det vil tiden alt samme vise!
Hvis nogen har lyst til at samarbejde, og lege med, så meld jer endelig:-)
-Ellers, stay tuned, og følg med fra sidelinjen.

Ramie

Der er riiiimelig meget bastfiber omkring mig, i tiden:-) I alle mulige tilstande, blandinger og kvaliteter. -og det er så fedt:-)

På billedet ses nogle af de lækre metervarer med ramie, som jeg just har fået hjem. De ligger oven på en giga fibermåtte af dansk-dyrket hamp. Til venstre for rullen ses hele, tørrede danske hampe-stængler , mens det “neg” der står til venstre for fibermåtte-rullen, består af 1 meter lange danske hampe-stængler. Disse stængler er høstet efter at toppene, med hampe-frø, er blevet høstet. Foran fibermåtterullen ligger noget kinesisk grøn-dekortikeret hamp.

Bastfibre er stængelfibre. Eksempler på bast/stængel-fibre er hør, hamp, ramie, jute, sisal, nælde og jute. Til sammenligning er bomuld en frøfiber. Både stængel- og frøfibre består af cellulose, og er altså placeret øverst til ventre (klokken 1-2 sykker) i fiberklassificerings-hjulet (nedenfor eller her).

Bastfibre er ret interessante, af mange forskellige grunde; som tekstilfiber er de ret lækre, og kan formentlig erstatte bomuldsfibre i mange sammenhænge. Den miljømæssige pointe er at dyrkning af bast-fiber afgrøder som udgangspunkt er mere miljøvenlig og udbytterig end dyrkning af bomuld. Tager jeg biotek-nørd brillerne på, er bastfibrene også super spændende; Traditionelt er bastfibre blevet forædlet til tekstilfibre ved forskellige ofte ret miljø-belastende rødnings-processer, kombineret med kemiske og mekanisk behandling. I tiden arbejdes der ganske meget med at udvikle og implementere enzymatiske, bioteknologiske forædlings-metoder, der har potentiale for at gøre forædlingen af bastfibrene mere miljøvenlig, billigere og mere kontrollérbar. Potentialet er at bast-fibre, der forædles enzymatisk, bliver blødere og stærkere, og formentlig også lysere, så behov for efter-blegning af fibrene kan undgåes.

Som metervare minder ramie om hør og hamp; lækker komfort i forhold til fugt-absorption ikke-isolering om sommeren, behagelig mod huden. Og, ret stor tilbøjelighed til at krølle og miste faconen, hvis ikke der er taget godt hensyn til dette ved valg af model, som stoffet benyttes til.

I forhold til hamp er ramie ret sjov fordi et af de helt indledende trin, decortikeringen hvor fibrene adskilles fra den indre træ-agtige stængel-kerne, kan gøres ved at fibrene skrælles af.

Ramie er en nælde-plante, altså i familie med vores egen brændenælde. Ramie dyrkes hovedsagelig i asien, som det kan ses af dette dyrknings-kort fra wikivisually.

På billedet herunder ses forskellige stof-kvaliteter helt eller delvist af ramie: De oprullede kvaliteter er ramie/tencel/elastan-blanding. De ikke-oprullede stoffer foran er jersey af 100% ramie. Det bliver virkelig interessant at komme igang med at teste stofferne, og at komme igang med at arbejde med hvordan de arter sig, når der syes tøj af dem. -stay tuned:-)

Superwash (“anti-felt”) behandling af uld

Uld kradser. Eller retter; NOGET uld kradser. Der er nemlig stor forskel på forskellige typer ulds tilbøjelighed til “at kradse”. Dertil komme at uld kan behandles, under forædlingen af rå uld til tekstilfiber, så ulden ikke længere kradser helt så meget. Denne type behandles kendes som superwash behandling eller anti-felt behandling. Når ulden efter-behandles på denne måde, bevirker det nemlig både at den kradser mindre, men også at den bedre tåler maskinvask, uden at krympe.

Grunden til at uld krymper ved vask, og kradser, skyldes den fysiske opbygning af uld-fiberen. Overfladen er særdeles ru, da den er opbygget med en skæl-struktur, der mindre hvordan tagsten lægges.

På billedet herover ses forskellige tekstile fibre i forstørrelse (ved hjælp af skanning elektron mikroskopi). Der ses tydelig “skæl-struktur” for de forskellige uld-typer, corse (grov), fine, alpaca, cashmere, og denne skælstruktur er især påfaldende for uld-fibrene, når man sammenligner med de andre fiber-typer; silke, linen (hør), cotton (bomuld) og polyester.

Det ses også at der er forskel på størrelsen af skællene på de forskellige uld-fibre, og at fibrene har forskellig tykkelse. Skællene er dem, der bevirker at det kan opleves at uld “kradser”, og at uld krymper ved vask; skællene virker simpelthen som modhager, så fibrene filter sammen.

Derfor, når man forsøger at modvirke at uld kradser og krymper, arbejder man ud fra princippet for at få formindsket skællene. Dette kan gøres på forskellige måder;

  • formindske skællene ved at nedbryde dem, kemisk eller enzymatisk.
  • “coate” fiber-overfladen, så der lægges en tynd hinde hen overskæl-strukturen.

Kemisk formindskelse af skællene har typisk været udført med klor eller basisk væske. Begge behandlinger kendes som værende ganske miljøbelastende, især hvis der ikke er ordnede forhold for spildevands-rensning. Den enzymatiske formindskelse af uldens skæl kendes som for eksempel bio-poolishing, og betragtes som værende mere miljøvenlig. Her benyttes enzymer fra for eksempel Novozymes, til at nedbryde spidserne på skællene, så de ikke er så skarpe længere.

Coating af uld-fibre, hvor der lægges en tynd hinde rundt om hver enkelt uld-fiber, kan benyttes sig af forskellige polymere til at coat’e fibrene.

Dilling, dansk producent af økologisk undertøj, har lavet en fin, pædagogisk grafisk fremstilling af princippet for de forskellige behandlinger af uld-fibrene.

Coat’ede uldfibre opleves typisk som værende blødere end kemisk og/eller enzymatisk behandlede fibre, da modhagerne er helt dækkede. Til gengæld mistes også nogle af ulds andre gode egenskaber, nemlig evnen til at binde fugt og modvirke sved-lugt. -Og, der er en tilbøjelighed til at coatingen/hinden vaskes af, med tiden, så man kan opleve at ens yndlings-uldtrøje lige pludselig krymper ved vask, efter at være blevet vasket uden problemer masser af gange…

 

I forhold til coating af uld-fibrene, sker der spændende teknologiske landvindinger; Schoeller-gruppen vandt således i 2013 Outdoor Industry Award 2013 GOLD prisen for deres chlorine-free EXP 4.0 machine-washable treatment. 

Princippet for Schoellers EXP-metode illustreres i denne figur:

 I stedet for at overtrække hele fiberen med en vand-holding hinde, “beklædes” kun de steder på uldfiberen hvor modhagerne/skællene er. Det beskrives på Schoellers webside at der benyttes ecological polymer i micro patches. Af deres webside fremgår det at EXP is the first wool finishing process in the world to meet the strict criteria of the “bluesign®” and “Global Organic Textile (G.O.T.S)” standards, and it also conforms with the “Öko-Tex standard”.

 

 

 

 

Tekstilfibre af lab-fremstillede (rekombinante) proteiner

2015-07-24-1437765014-8619988-boltthreads-thumb

At proteiner kan spindes (i betydningen; fiberfremstilles) af mennesker, til tekstile fibre, er på ingen måde nyt. Faktisk startede det for et par århundreder siden, da man eksperimenterede med vådspinding af de såkaldte Azlons; regenererede/fremstillede tekstilfibre af protein. -Den tekstilfiber, der formentlig er bedst kendt, er mælkeprotein-fiberen, men også sojaproteinfiber og majsproteinfiber er ret let at skaffe sig, fx i velassorterede garn-forretninger. I sin tid skrev jeg en lille artikel om mælkeprotein-fibrene.

Istedet for at benytte proteiner fra fx køer, sojaplanter eller majskolber, er der efterhånden stadig flere beretninger om laboratorie-fremstilling af protein til tekstilfibre. Protein-fibre kender vi jo i forvejen som særdeles komfortable materialer til beklædning; både uld og silke er protein-fibre. Uld og silke er naturlige tekstilfibre. Ved at fremstille protein til fiberfremstilling i bioreaktorer, behøver vi ikke “dyrke” får eller silkeorme, for at høste deres fibre. Derved muliggøres mere miljøvenlig og dyre-etisk fremskaffelse af udgangsmaterialet for tekstiler. Man kan snildt forestille sig at også de ovenfor nævnte azlon-proteiner, kasein, soja-protein og majs-protein, kan fremstilles rekombinant vha mikroorganismer, i stedet for at skulle “dyrke” henholdsvis køer, sojaplanter eller majs.

SPIBER_LOGO

Det japanske firma Spiber fremstiller edderkoppesilkeprotein vha bakterier; såkaldt rekombinant udtryk af protein (på samme måde som fx insulin til mennesker kan fremstilles vha bakterier). Dette materiale af edderkoppeprotein benyttes til at fremstille tekstilfibre, og sammen med firmaet North Face er der blevet  fremstillet en parka.

north-face-moon-parka-4

North Face – Spiber Moon Parka Jacket – Synthetic Spider Silk Fabric …

nav.logo

Foretagenet Bolt Threads fremstiller også protein vha bakterier, for eksempel silkeprotein, med henblik på at kunne producere silkeprotein i stor skala, og med mulighed for at modificere proteinet.

Screen Shot 2016-05-06 at 23.57.30

Når proteiner fremstilles på denne måde, i bioreaktorer vha bakterier eller gær, er der uanede muligheder for at ændre på proteinet, så det får nye egenskaber. Et mere ekstremt eksempel er modificering af silke-proteinet så det blev selvlysende, ved at koble sekvensen for GFP til sekvensen for fibroin, inden dette kombi-protein blev udtrykt af mikroorganismer (omtalt i dette indlæg).

Fluorescent-Cocoons-Crop

Også firmaet Kraiglabs fremstiller protein, der har ændrede egenskaber, i forhold til naturlig silke; det såkaldte Monster Silk™

logo

KraigLabs fiber er fremstillet af protein der er en “blanding” af edderkoppens og silkeormens silke. De har blandet opskriften (sekvensen) fra de 2 proteiner, og får fibrene fremstillet ved hjælp af transgene silkeorm.

monster-spider-silk-moths

Ved at blande sekvenserne fra de 2 naturlige silkespindere, edderkop og silkeorm, opnår firmaet en markant stærkere og mere fleksibel fiber en kommercielt tilgændeligt silke.

Spændende at se hvad fremtiden bringer!

 

 

Forædling af danskdyrkede fibre

Der er gang i udviklingsarbejdet med forædling af danskdyrkede hamp til tekstilfibre.

Screen Shot 2016-03-23 at 09.25.29

Rachel Kollerup og Bodil Pallesen har skrevet en fin artikel til Effektivitet, om det projekt, jeg er involveret i og som jeg tidligere har præsenteret: Fremtidens bæredygtige tekstiler er lavet af hamp.

For nylig er udgivet en rapport, over projektet “Lokal hampeproduktion“, gennemført af Danish Fashion Institute, Teknologisk Institut og VIA Design. Lokal hampeproduktion til tekstil anvendelse

Dejligt med opmærksomhed for dette spændende arbejde!

 

Enzym-behandling af hampefibre

47263799
At jeg er begejstret for hamp (og andre bastfibre) til tekstiler, skal ikke være nogen hemmelighed, og kan ses af tidligere indlæg:
Jeg er aktuelt involveret i et fantastiske spændende projekt ved Agrotech i Skejby, sammen med bl.a. Seniorkonsulent Bodil Pallensen og designer Rachel Kollerup, hvor vi bl.a. undersøger potentialet for at dyrke hamp til tekstilfibre i Danmark, og fx arbejder med enzymatisk rødning af dansk-dyrket hamp.
Vi går igang med at enzym-bearbejde grov-skættede hampestængler/fibre inden for de næste uger, og vil herefter evaluere om enzym-processeringen gør at fibrene bliver finere og blødere, end uden enzym-rødning. Videnskabelig litteratur indikerer at der er virkelig gode perspektiver i at benytte enzymer i forædling af tekstiler generelt og bastfibre specifikt. Mængderne af fibre vi arbejder med er foreløbig ganske små, ca 30 g, hvilket svarer til en “god tot” eller en “go’ håndfuld”. Målet er at kunne bearbejde fibrene på miljømæssig forsvarlig måde, så de opnår egenskaber der minder mest muligt om bomuldsfibre (såkaldt; “cottonizing”).

Opdatering: Her der den færdige rapport  Bæredygtige hør- og hampetekstiler. Og en artikel om projektet fra Effektivitet: Fremtidens tekstiler er lavet af hamp

 

Hamp

Hamp er en ældgammel landbrugsafgrøde, der kan anvendes til en lang række formål, her iblandt beklædning.

Fra Landbrugsinfo :

Interessen for hamp- og hørdyrkning er stor mange steder i Europa. Det skyldes ikke mindst, at hamp har et stort udbyttepotentiale, og at både hamp og hør har mange anvendelsesmuligheder, som der er et stigende marked for i Europa, det være sig både som fiber og som modne frø. Ikke mindst hampefrø har et højt indhold af højværdiproteiner og -olier, som gør frøene interessante til såvel fodermiddel som human ernæring.

Stængler fra såvel hamp og hør kan udnyttes til mange forskellige produkter, så som isoleringsmaterialer, lydisolering, geotekstiler i form af vækstmåtter og ukrudtsdække, til kompositter i bilindustrien m.v. Endelig bliver hamp og hør også anvendt til tekstiler.

Biproduktet ved forarbejdning af hør- og hampestænglen til fibre er de træholdige skærver fra det inderste af stænglen, som er velegnede til hestestrøelse og som bioenergi m.m.

I 2012 bragte videnskab.dk en artikel “Forskere: ‘Mere hamp på danske marker‘”, hvor det hedder at “ifølge forskerne giver det skandinaviske klima gode muligheder for at dyrke hampplanter“. I artiklen udtaler professor Irina Angelidaki fra DTU sig også, nemlig at hun er med til “at undersøge en række anvendelsesmuligheder for hampplanter, og det ser rigtig lovende ud“.

Ved Agrotech, landbrugets GST-institut i Skejby, har seniorkonsulent Bodil E. Pallensen i det meste af en menneskealder interesseret sig dyrkning og afsætning af plantestængler, fx industrihamp til anvendelse som isoleringsmaterial. Hampstængler vil også kunne benyttes til tekstilfiber-produktion, men “Det kræver at der er et effektivt høstkoncept, en forarbejdningsvirksomhed, og et marked for en ny afgrøde”. 

Agrotech har udgivet en folder om dyrkning og anvendelse af hamp; “Industrihamp – SKABER VÆRDITILVÆKST OG ET BEDRE MILJØ!” Her i hedder det vdr hamp til “tekstilindustrien leveres stænglerne i deres fulde længde i pressede baller“, og at “Der er i Danmark kun een godkendt forarbejder af hamp, som kan skætte hamp til blår (fibre) og skæver. Der er desuden en række af virksomheder i Europa, som kan aftage hampefibre“.  I brochuren oplistes også at:

AgroTech kan indgå som samarbejdspartner, når det drejer sig om:

  • Værditilvækst fra mark til markedet – det vil sige hele produktionskæden.
  • Rådgivning om dyrkningssystemer.
  • Optimering af råvarekvalitet.
  • Produktudvikling af nye plantefiberprodukter og -teknikker.
  • CO2-regnskab for nye produkter.
  • Samarbejde mellem industri og øvrige interessenter i hele produktionslinien.
  • Styring af projekter, projektledelse.
  • Rådgivning inden for industrihamp og andre alternative afgrøder. 

Det kunne det være særdeles interessant at være involveret i at undersøge om der er basis for lokal, kommerciel produktion af hamp til tekstilproduktion.

Beklædning af hamp kan fx skaffes gennem tyske HempAge – Dressed by nature. Dyrkning og forarbejdning foregår dog i kina, som det beskrives i folderen med “Hemp info“.

Den traditionelle forædlingsproces af hampplanter til tekstil-fibre er beskrevet af tyske HempAge (oversat til dansk): Planterne er sået , høstet, rødnet og tørret på den traditionelle måde der ikke har ændret sig i tusinder af år. Udblødning er gjort for at opløse de bindemidler , der binder bastfiber under barken til den træagtige indre kerne. For at gøre dette, bliver de høstede stilke lagt i blød i små bassiner, der er fyldt med vand fra floder eller åer. Stænglerne “røder” indtil bindingen mellem fiber og træagtige kerne er brudt ned. Efter rødning bliver den færdig hamp lagt ud eller bundtet til tørring ved siden af bassinerne. De rødede og tørrede hampstilke kan herefter opbevares for at blive strippet senere, når de arbejdskraftintensive høstsæsonen er slut. Denne peeling adskiller fiberholdigt bast fra resten af den træagtige kerne, som samles og bruges som et vedvarende (og CO2- neutral) energikilde i de kolde vintermåneder. Endelig bundtes bast fibrene til baller og sælges til spinderi.

Selv har funderer lidt over hvor stor metan-udledning er ved rødningsprocessen, og jeg har fundet noget videnskabelig litteratur om dette. I artikel “The environmental impacts of the production of hemp and flax textile yarn” sammenlignes et reference scenarie med traditionel varm vandrødning af hamp med (1) bio-udblødning , dvs “grøn” skætning af hamp, efterfulgt af vandrødning , (2) babyhemp, baseret på udblødning på stativer, af præ-modne hamp (3) dug udblødning af hør.
Det konkulderes at ingen af de alternative scenarier var entydigt bedre end reference-scenariet.
Vedrørende selve forædlingen af hamp-fibrer, kunne det være også være interessant at undersøge om der er basis for kommerciel produktion af enzymer til at forestå rødningsprocessen, således at den mikrobiologiske anaerobe proces kunne optimeres til en enzymatisk proces. En sådan enzymatisk proces, såvel som resten af forarbejdnings-maskineri og udstyr, er beskrevet i et konference bidrag ved “International Conference on Flax and Other Bast Plants ” i 2008: “Enzymatic Bioprocessing – New Tool of Extensive Natural Fibre Source Utilization“.
Andet processeringsudstyr, til moderne forarbejdning af plantestængelfibre, fra canadiske CRAiLAR Technologies, er beskrevet i dette wikipedia-indlæg
I et helt nyt nyhedsindlæg fra the Guardian beskrives hvorledes et firma “Hemptown” har arbejdet med at gøre hamp-fibrene blødere ved at bearbejde pektin-indholdet i stænglerne:
Thanks to green chemistry and enzyme science, we worked out that naturally occurring enzymes can be used to rinse the raw fibre and remove all the pectins,” says Nalbach. “What you come out with is a soft, fine fibre of flax or hemp that can be blended with cotton but is far more sustainable than 100% cotton or polyester.
Så… der er rigtig mange initiativer i gære, i forhold til at udnytte hamp som afgrøde, og måske endda på bæredygtig måde til lokal tekstilproduktion…? Personligt kan jeg kun hilse det velkomment, og hjælpe det så godt som muligt på vej!

Danske råvarer til lokal og bæredygtig tekstilproduktion

Hvilke råvarer har vi i Danmark, der kunne være råmateriale for tekstil produktion. -Efter en brainstorming med mig selv, er jeg kommet frem til følgende. Nogle af dem er MEGET på ide/konceptstadie, andre er mere modne til at kunne fungere som råvare, såfremt afsætning kan sikres. Rækkefølgen er ikke på nogen måde hierakisk!  Jeg modtager meget gerne input.  Jeg arbejder på at adresse dem enkeltvis, med blogindlæg og foreløbig kan der læses om keratin som råmateriale for (tekstil)fibre, via nedenstående link.

Keratin (hår, fjer, uld)

Nælder, Hør, Hamp

Bomuld (fra genanvendelsepotentiale… renewcell)

Bioplast-afgrøder / PLA afgrøder

Alger: Regenererede protein- eller cellulose fibre

Lupin: Proteinbaseret regenereret fiber

WoolYarns og Zealana garn

Da vi i foråret passerede Lower Hutt i New Zealand, kiggede vi forbi ved virksomheden WoolYarns A/S. Vi blev mødt med stor vanlig kiwi-imødekommenhed, og jeg fik nogle garn-prøver, som man man se af nedenstående håndholdte billeder. Kvaliteterne er utrolig lækre, og det ville virkelig være en fornøjelse at prøve at (maskin)skrikke i disse kvaliteter. Om man lyster at få garn-prøverne mellem fingrene, så tag endelig kontakt!

Se også mit indlæg om Possum fibre, og følg evt RQ-koden nederst i indlægget, for at læse mere om Zealana garn kvaliteterne.

20140507-093851.jpg

20140507-093904.jpg

20140507-093918.jpg

20140507-093933.jpg

RQ zealana